Development of a Nuclear Spin Dewar:

Hyperfine Interactions of the Short-Lived β Emitter ¹²B in TiO₂

M. Ogura, K. Minamisono, T. Sumikama, T. Nagatomo, T. Iwakoshi, T. Miyake, S. Kudo, K. Akutsu, K. Sato^a, M. Mihara, M. Fukuda, K. Matsuta, H. Akai, and T. Minamisono

Department of Physics, Graduate School of Science, Osaka University,

Toyonaka, Osaka 560-0043, Japan

^a The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan

Reprint requests to M. O.; Fax: +81 6 6850 5535, E-mail: ogura@vg.phys.sci.osaka-u.ac.jp

Z. Naturforsch. **57 a,** 599–602 (2002); received April 9, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

The β -NMR detection of 12 B ($I^{\pi}=1^+$, $T_{1/2}=20.2$ msec) implanted in a TiO₂ (rutile) single crystal following a nuclear reaction showed that its spin polarization produced in the reaction is totally maintained during its lifetime. Two implantation sites with relative populations 9:1 were identified. The electric field gradients (EFGs) were determined to be $q=+(37.1\pm0.5)~10^5~V/cm^2$ with $\eta<0.03$ and $q=+(185\pm5)~10^{15}~V/cm^2$ with $\eta=0.62\pm0.02$ for the major (90%) and minor (10%) sites, respectively. The EFGs were compared with the theoretical values given by the band-structure calculation in the framework of the KKR method. TiO₂ crystals with proper treatment can be a good "Spin Dewar" in which any short-lived nuclei can be implanted, and their spin polarizations as produced in nuclear reactions can be maintained during their lifetime.

Key words: Nuclear Polarization; β -NMR; Electric Field Gradient; TiQ.